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MICROECONOMICS - HW #3

1. Robinson Crusoe Economy

(a) Assuming free disposal and yo > 0 (which seem to be necessary
for the desired equivalence), then a production vector y is feasible
if and only if
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y3+y1+a<0
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Note U is concave in y3, and

Ully2) =6 —3y> = y; =2
L=—y1>ys4+a =>L"=4+a

(c) In deciding whether to produce, Robinson compares U (y35) to the
utility of consuming his endowment:

Ulw) = U(24,0) = 24
3
U(y;):24—a+6-2—§-22:30—a

So it’s optimal to produce when a < 6.
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(d)

For a =0, Y is convex. Since U is quasiconcave, the indifference
sets are also convex, so there exists an indifference set tangent to
Y. The tangent slope is the (negative) equilibrium price. So
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Evaluating each of these, we get
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Combining and applying the ratio rule yields
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Since only the price ratio can be uniquely determined, let’s take
p = (1,4). This yields optimal profits

M"=p-y*=—-4+8=4

As we've already shown, the consumer maximizes his utility by
producing whenever a < 6. Applying the same analysis to the
firm,

ys)=p-y*"=1-(—4—a)+4-2=4—a

So for a < 4, both parties profit by producing, and there is a
Walrasian Equilibrium. For a € (4,6) it is optimal to produce,
but profits are negative.



(f) Given labor price p; = 1, the cost function is
Cly2) =1-L=y1 =y +a

Differentiating, we get MC = 2ys, so if we force p» = MC and
give a lump-sum subsidy of s, then

M(y2) = pay2 — Clyz) + s =4y —y5 —a+s
As before, this function is maximized at yo = 2, so
M=4—-a+s

If we want the firm to produce, we must offer a subsidy s > a—4.
Note it is not necessary to offer a per-unit subsidy, since if the
firm opts to produce at all, it maximizes profits at y3.

2. Edgeworth Box
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(a) At all interior points, MRSy =2 > 1 = M RSp, so there are no
interior equilibria. Alex always has a greater preference for com-
modity 1, so at any price, someone will want to trade. Specifically,
for price ratios between 1 and 2, Alex will wish to buy commodity
1, and Bev will wish to buy commodity 2.

Along the South and East edges of the box, however, this trade
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is impossible, as one or both of the parties is constrained. Specif-
ically, on the East side, Bev is constrained by z¥ = 0, so equilib-
rium prices determined by Alex’s indifference curves. That is,

PL_ pRS, =2
D2

(b) By the same analysis, on the South side of the box,

Pl MRSp =1

p2
Both here and in (a), we can extrapolate from the WE points
to determine the starting endowments that can result in these
equilibrium allocations.

(c) As seen graphically, w? = (10, 16) does not lead to an equilibrium
with price ratio 1 or 2. The only remaining equilibrium allocation
isat z4 = (20,0), where both parties are constrained, so any price
between 1 and 2 is an equilibrium. Therefore, the price ratio is
whatever brings this endowment to that allocation:

P1 _ A(IIZ o —16 _ 8
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(d) Since both agents are constrained, any price ratio between 1 and
2 is an equilibrium.

3. Equilibrium and Pareto Efficiency
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(a) At the interior solutions,
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Note x‘f and (IIZA are linearly related, so the contract curve is
linear. At point L, where the curve hits the West side,

$2B - w9

MRSp(wr,w2) = B+w a+B+w

Solving for xé‘ at L,
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Ca+B4w
And symmetrically at the intersect point R,

Pw2
a+ B+ w
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(b) At interior solutions, price is constant, as shown in (a). On the
West side, prices vary continuously from L to 04. At 04,

U1 (wl) _ w2
Us(w2)  B+wr

The symmetric result holds on the East side. Recalling that
B > a, the price ratio is largest at 07, so

MRSp =

]ﬂ w2 w2
P2 |lat+B+w’ atw

(¢) - (d) With this definition of ¢* and ¢?, we may write
UA(ch) = In(cf!) + In(cd))

UB(CB) = ln(cjlg) + ln(cZB)

Since these utility functions are symmetric, the contract curve
would normally run down the diagonal of the box. But because



part of the endowment is untradable, allocations outside the dot-
ted lines are infeasible.

04! ' =a cl=at+w d=atw +p

4. Edgeworth Paradox

(a) Assuming an interior solution, Alex’s demand function is deter-
mined by her tangency constraint,

pr _ 3(=5 —3)
P2 $‘14—3

along with her budget constraint, p - 2" = p - w", which can be
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Combining these expressions, we get
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Multiplying the right side by % and using the ratio rule, we get
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The same analysis for Bev gives
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(b) Adding the previous expressions,
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The market clears when z4' + 2P = w; = 8, so with a price ratio
of 1, any value of a will do.

(c) For a < 0, Alex’s demand for good 1 is increasing in p;, which
certainly seems screwy.
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(d) With a =0, w? = P and the market clears at any price ratio, as
seen graphically above.

(e) Since each agent’s consumption set is {z : x1,z2 > 3}, only the
points inside the dotted box can be equilibria. Consequently, any
endowment outside the range of the price lines emanating from
P = (6,2) cannot yield an equilibrium.



